Malaria – Mit einem Cocktail gegen die Verwandlungskünstler

Plasmodien, die einzelligen Erreger der Malaria, haben eine Vielzahl von Mechanismen entwickelt, mit denen sie der Immunabwehr des Menschen immer wieder entkommen.

Die Parasiten verstecken sich im menschlichen Organismus innerhalb von Zellen. Als „Sporozoiten“, die mit der Speichelflüssigkeit der weiblichen Anophelesmücke in die Blutbahn gelangen, erreichen sie innerhalb von nur 30 Minuten die Leber. Jeder einzelne Sporozoit, der hier eindringt, produziert bis zu 40000 Nachkommen, „Merozoiten“ genannt, die dann ausschwärmen und binnen zehn Minuten die ersten roten Blutkörperchen (Erythrozyten) befallen.

Malaria-Zyklus - Wikipedia

Komplizierter Zyklus: So vermehren sich Plasmodien, die Erreger der Malaria. (Von Chb, Wikipedia)

Die Nachkommen dieser Blutstadien befallen dann in regelrechten Angriffswellen immer neue Erythrozyten und lösen damit die Fieberschübe aus, die mit der Malaria einhergehen. Innerhalb einer Woche vollendet sich der fatale Kreislauf, wenn – bei einem erneuten Stich – geschlechtliche Formen des Parasiten in die Mücke gelangen, um dort den Lebenszyklus abzuschließen.

Dem Immunsystem bleibt also wenig Zeit, seine Abwehrwaffen zu mobilisieren. Außerdem deutet vieles darauf hin, dass die Plasmodien gelernt haben, nur solche Oberflächenstrukturen zu präsentieren, die sich die körpereigene Abwehr nicht „merken“ kann. Die Zellen des Immunsystems erkennen nicht die kompletten Eiweiße, wie sie auf der Hülle des Parasiten vorkommen, sondern immer nur kurze Bereiche (Epitope).

Ein Großteil der Forschung konzentriert sich heute darauf, diejenigen Epitope zu finden, die das Immunsystem optimal stimulieren. Dazu werden die Eiweißstrukturen auf den Parasiten durchgemustert und in einzelne Bruchstücke zerlegt. Computervorhersagen sollen dabei helfen, besonders markante (immunogene) Epitope zu finden. Diese können dann im Labor nachgebaut oder mit gentechnischen Mitteln vervielfältigt werden.

Obwohl die B-Zellen des Immunsystems bei der Infektion Antikörper in großen Mengen produzieren, ist der betroffene Mensch dennoch nicht geschützt. Durch Anregung der T-Zellen hoffen viele Wissenschaftler, die noch ungenutzten Kräfte der menschlichen Immunabwehr wecken zu können. T-Zellen zerfallen in mehrere Untergruppen, von denen z. B. die ‚Killerzellen in der Lage sind, von Erregern infizierte Zellen zu zerstören. Ihren Einsatzbefehl hierfür bekommen sie von den T-Helferzellen.

Die Helferzellen können die Bruchstücke des Parasiten aber nicht alleine erkennen. Fresszellen (Makrophagen) fallen über die Parasiten her, kurz danach tauchen die Bruchstücke (Antigene) der Eindringlinge wieder an deren Oberfläche auf. Die Bruchstücke hängen dabei an einer Eiweißstruktur, die von den Experten kurz MHC-Antigene genannt wird. Die Kombination aus MHC-Antigen und fremdem Antigen dient schließlich als Signal für die Helferzellen, die Fresszellen zu aktivieren.

Erschwert wird die Suche der Wissenschaftler nach den „besten“ Epitopen dadurch, dass es vermutlich Hunderte verschiedener MHC-Moleküle gibt. Sie kennzeichnen körpereigenes Gewebe und sind auch für die Abstoßungsreaktionen nach Transplantationen verantwortlich. Es gilt also, Epitope zu finden, die mit möglichst vielen MHC-Antigenen eine Bindung eingehen können.

Ein zusätzliches Problem besteht darin, dass die Sporozoiten auf dem Weg in die Leber einen Teil ihrer Hülle abwerfen. Antikörper, die an diese Hülle binden, können dem Parasiten daher nichts anhaben. Die Merozoiten, die die Leber verlassen, erscheinen sogar in völlig neuer Verkleidung. Ein Impfstoff wird also aus einem „Cocktail“ bestehen und eine Vielzahl von Epitopen enthalten müssen, die für die verschiedenen Entwicklungsstufen des Parasiten charakteristisch sind.

Man wird sich dabei bemühen, vor allem solche Oberflächenstrukturen anzugreifen, die für die Plasmodien lebenswichtig sind. Infrage kämen etwa Bruchstücke der Eiweiße, mit denen die Erreger an Leberzellen und rote Blutkörperchen binden.

Hier taucht ein weiteres Problem für die Forscher auf: Zwischen den vielen verschiedenen Malariastämmen, die in den betroffenen Ländern vorkommen, existieren wiederum Unterschiede in den Oberflächen-Proteinen. Ein Impfstoff müsste aber gegen Erreger-Stämme auf der ganzen Welt wirksam sein.

(erschienen in der WELT am 28 Juni 1989)

59-info@2xWas daraus geworden ist: Die Vorstellung eines Impfstoffes, der so wie bei vielen Kinderkrankheiten mit einer Spritze 100-prozentigen Schutz verleiht, hat sich bei der Malaria als reines Wunschdenken erwiesen. Schon auf der Wissenschaftspressekonferenz in Bonn, die diesem Bericht zugrunde lag, waren durchaus kritische Töne zu hören, etwa von Professor Hanns Seitz, damals Direktor am Institut für Medizinische Parasitologie der Universität Bonn. „Mehr als ein Jahrzehnt intensiver Forsschung lassen erkennen, dass die Immunologen sich mit ihren Prognosen verschätzt haben, und dass ihre Voraussagen zu optimistisch waren“, sagte Seitz damals meiner Kollegin Dr. Vera Zylka.

Es gibt aber auch gute Nachrichten: Die Zahl der Toten ist von jährlich ca. drei Millionen auf etwa 600000 gesunken, seit die Weltgesundheitsorganisation und Stiftungen wie die Bill & Melinda Gates Foundation begonnen haben, den Erreger mit Insektiziden und Moskitonetzen in Schach zu halten. Und im Juli 2015 hat die Europäische Arzneimittelbehörde dann die Zulassung eines Impfstoffes empfohlen, der für Babys in Risikogebieten gedacht ist und der in Studien zwischen 27 und 48 Prozent der Erkrankungen verhindern konnte, wie die Frankfurter Allgemeine Zeitung berichtet. Folgt die EU-Kommission der behördlichen Empfehlung, wäre „Mosquirix“ der erste zugelassene Malaria-Impfstoff überhaupt.

 

MSimm
Journalist für Medizin & Wissenschaft